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Successful robotics paradigm




A new paradigm
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Full-stack approach to social navigation




Social robot navigation



The challenge

Gates Hall, Cornell University, 2015



The challenge
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How do humans do it
-




Wolfinger '95

Pedestrian interaction is inherently complex yet observably ordered. For order to be
possible, people must behave like competent pedestrians and must expect copresent
others 1o act accordingly. Although many researchers have examined pedestrian
behavior, few have considered exactly how pedestrians develop and sustain the
expectation that others will indeed behave like competent pedestrians. Using ethno-
graphic data, the author shows how these expectations emerge in the specific practices
that comprise pedestrian behavior. Various researchers have attributed pedestrian order
to the existence of a tacit contract between users of public space. The author’s findings
extend the implications of this work by explicating the social and collaborative processes
by which users of public space come to trust each other to act like competent pedestrians.

PASSING MOMENTS
Some Social Dynamics of Pedestrian Interaction



Insight
Enabling robots to represent passing
could mitigate lack of accurate models
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Passing as rotation
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Passing as rotation
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Passing as rotation




Passing as rotation
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Passing as rotation
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Passing as rotation
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Monitor and expedite passing
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A pCISSing -awdre MPC Constant velocity prediction!
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Mavrogiannis et al. RA-L '23, ICRA ’23
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Safe, efficient navigation in dense crowds

CADRL [Everett et al., IROS '18] Ours [Mavrogiannis et al. RAL '23, ICRA ’23]
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Higher is better

Safe, efficient navigation in dense crowds
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CADRL Ours

CADRL

v" Domain knowledge & math insights empower simple models

X Simple models might struggle with more complex settings
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Sriyash Poddar

Scaling to complex settings

“From crowd motion prediction to robot navigation in crowds”

Poddar, Mavrogiannis, Srinivasa

Motion and Path Planning 1V; 14:48-14:54, Paper TuBT9.9
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Human motion prediction

80 Source: Rudenko et al. 2020 Source: Papers with code
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Probabilistic prediction based on S-GAN

Conditional distribution
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S-GAN. Gupta et al. 2018
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A passing-aware MPC

S-GAN based probabilistic prediction!
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Lab experiments
3 Conditions 3 MPC variants
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Cooperative
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Better prediction = better navigation?

Prediction error Safety vs Efficiency

CV ~ §-GAN
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Human motion prediction:
relevance to social robot navigation?

80 Source: Rudenko et al. 2020 7 Source: Papers with code
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Better benchmarks/metrics
Better datasets/simulators
Deeper user understanding
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Understanding
users’ perceptions

Mavrogiannis et al. HRI 19, T-HRI 22



Experiment design for social navigation

Natural walking

Crowded space

Challenging interactions
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Within subjects, 3 conditions

Ours ORCA Teleoperation (TE)
[Mavrogiannis et al., ’18] [Van den Berg et al., '09]
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Lower is better

105 users walked more comfortably
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Users were less disturbed by the robot
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ematic analysis of short res
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Lower is better

105 users walked more comfortably
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“| barely noticed the robot when | was performing the tasks”

(Ours)

“I had no idea what the robot was doing”
(TE)

“| felt the robot was in my personal space”
(ORCA)
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There is more to human perceptions...
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Many additional challenges

Core Challenges of Social Robot Navigation: A Survey

CHRISTOFOROS MAVROGIANNIS, Paul G. Allen School of Computer Science & Engineering, Uni-
versity of Washington, USA

FRANCESCA BALDINI, Honda Research Institute and California Institute of Technology, USA
ALLAN WANG, The Robotics Institute, Carnegie Mellon University, USA

DAPENG ZHAOQ, The Robotics Institute, Carnegie Mellon University, USA

Q U q I ill.q tive \ 34 q U G nll-ill-q tive PETE TRAUTMAN, Honda Research Institute, USA

AARON STEINFELD, The Robotics Institute, Carnegie Mellon University, USA
JEAN OH, The Robotics Institute, Carnegie Mellon University, USA

Robot navigation in crowded public spaces is a complex task that requires addressing a variety of engineering
U S e r_ C e n -I-e re d b e n C h m d r ki n g and human factors challenges. These challenges have motivated a great amount of research resulting in
important developments for the fields of robotics and human-robot interaction over the past three decades.
Despite the significant progress and the massive recent interest, we observe a number of significant remaining
challenges that prohibit the seamless deployment of autonomous robots in crowded environments. In this
survey article, we organize existing challenges into a set of categories related to broader open problems in
robot planning, behavior design, and evaluation methodologies. Within these categories, we review past work,
and offer directions for future research. Our work builds upon and extends earlier survey efforts by a) taking a
critical perspective and diagnosing fundamental limitations of adopted practices in the field and b) offering
constructive feedback and ideas that could inspire research in the field over the coming decade.

CCS Concepts: « Computing methodologies — Simulation evaluation; Reinforcement learning; Robotic
planning; - Computer systems organization — Robotics; Robotic control; - Human-centered com-
puting — User studies.

Additional Key Words and Phrases: Social robot navigation, motion planning, motion prediction, multiagent
systems, social robotics, benchmarking

Mavrogiannis et al. T-HRI 2023
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Insights

Domain insights empower simple models
Scaling requires expressive models
But transfer on real robots is nontrivial

Need for extensive user validation & benchmarks
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A new paradigm
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The Fluent Robotics Lab

fluent.robotics.umich.edu

ROBITCS
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