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Successful robotics paradigm
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A new paradigm
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A new paradigm
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Social navigation: an essential skill



Full-stack approach to social navigation
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Social robot navigation
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The challenge
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Gates Hall, Cornell University, 2015



The challenge
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✗ Limited datasets

✗ Unrealistic simulators

✗ Rich context

✗ Large space of behavior

✗ Limited mental models about robots

✗ No rules
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How do humans do it?
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Humans cooperate and expect cooperationWolfinger ’95



Insight
Enabling robots to represent passing 
could m itigate lack of accurate models

11



12How can we formalize passing?



Passing as rotation
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Passing as rotation
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Passing as rotation

15



Passing as rotation
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Passing as rotation
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Passing as rotation
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Monitor and expedite passing
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Motivate actions 

that maximize passing progress



A passing-aware MPC
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𝑎∗ minim ize

Goal Personal spacePassing

…

𝜆1 𝜆2 𝜆𝑛

Mavrogiannis et al. RA-L ’23, ICRA ’23

Constant velocity prediction!

…



Safe, efficient navigation in dense crowds
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CADRL [Everett et al., IROS ’18] Ours [Mavrogiannis et al. RAL ’23, ICRA ’23]



Safe, efficient navigation in dense crowds
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✓ Domain knowledge & math insights empower simple models

✗ Simple models might struggle with more complex settings



Scaling to complex settings
“From crowd motion prediction to robot navigation in crowds”

Poddar, Mavrogiannis, Srinivasa

Motion and Path Planning IV; 14:48-14:54, Paper TuBT9.9
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Sriyash Poddar



Human motion prediction
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Source: Papers with codeSource: Rudenko et al. 2020



Probabilistic prediction based on S-GAN
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Conditional distribution 

over future trajectories 

given window of the past

S-GAN. Gupta et al. 2018



A passing-aware MPC
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𝑎∗ minim ize

Goal Personal spacePassing

…

𝜆1 𝜆2 𝜆𝑛

S-GAN based probabilistic prediction!

…



Lab experiments
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Cooperative Distracted Aggressive

3 Conditions 3 MPC variants

S-GAN-1

S-GAN-20

CV [Mavrogiannis et al. 2023]
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Better prediction ⇒ better navigation?
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Human motion prediction: 
relevance to social robot navigation?
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Better benchmarks/metrics

Better datasets/simulators

Deeper user understanding

Source: Papers with code

Source: Rudenko et al. 2020

Source: Papers with codeSource: Rudenko et al. 2020



Understanding
users’ perceptions
Mavrogiannis et al. HRI ’19, T-HRI ’22
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Experiment design for social navigation
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Natural walking

Crowded space

Challenging interactions
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Within subjects, 3 conditions
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Teleoperation (TE)ORCA

[Van den Berg et al., ’09]

Ours

[Mavrogiannis et al., ’18]



105 users walked more comfortably
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Lower acceleration 

Users were less disturbed by the robot
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Thematic analysis of short responses
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105 users walked more comfortably
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“I had no idea what the robot was doing”

(TE)

“I barely noticed the robot when I was performing the tasks” 

(Ours)

“I felt the robot was in my personal space”

(ORCA)



There is more to human perceptions…
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Many additional challenges
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Qualitative↔quantitative

User-centered benchmarking

Mavrogiannis et al. T-HRI 2023



Insights
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Domain insights empower simple models

But transfer on real robots is nontrivial

Need for extensive user validation & benchmarks

Scaling requires expressive models



A new paradigm

41
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The Fluent Robotics Lab

42fluent.robotics.umich.edu
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